2.7 References
Gandrud, C. (2015). Reproducible Research with R and RStudio (2nd ed.). Chapman and Hall/CRC.
Lander, J. P. (2017). R for everyone (2nd ed.). Addison-Wesley.
R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Venables, W. N., Smith, D. M., & the R Development Core Team. (2009). An Introduction to R. Network Theory Limited.
Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. O'Reilly.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. Retrieved at https://joss.theoj.org/papers/10.21105/joss.01686
Wickham, H., François, R., Henry, L., & Müller, K. (2022). dplyr: A grammar of data manipulation. Retrieved at https://dplyr.tidyverse.org
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman and Hall/CRC.
Xie, Y., Allaire, J. J., & Grolemund, G. (2019). R Markdown: The definite guide. Chapman and Hall/CRC.